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[m,n] = size(A); x = zero&, 1); dx = zeros(n, 1); 
for k = l:m 

phi = A(k, 9‘; 
e = y(k) - phi‘*x; 
[R,yb] = newqr(R, phi, e, lam); 
dx = solve(R,yb); 
x = x + d x ;  
X(k, :) = x’; 

end 

function [R, yb] = newqdR, phi, e, lam) 
[m,n] = size(R); 
BigR = [R zerodn, 1); phi‘ e]; 
for i = 1:n 

end 
R = BigR(l:n, 1:n); 
yb = BigR(l:n,n + 1); 
function A = sweep(A, i, lam) 
% Input 
% 
% 
% 
% 

% A - swept matrix. 
[m,n] = size(A); 
[c, s, r] = givens(A(i, i)*lam, A(n, i)); 
A(i, i) = r; 
A(n,i) = 0.0; 
clam = c*lam; 
slam = s*lam; 
for k = i + 1:n 

BigR = sweep(BigR, i, lam); 

A - n x n matrix 
i - The (i, n) rows of the A matrix are swept, with the 

element A(n, i) being annihilated. 
lam - The forgetting factor. 

% output 

a = A(i, k)*clam + A(n, k)*s; 
A(n, k) = -A(i, k)*slam + A(n, k)*c; 
A(i, k) = a; 

end 
function IC, s, r] = givenda, b) 
% Input 
% 
% 

% 
% 
r = sqrt(aA2 + b 2); 
if r < 1.0e-8, 

else 

a, b - Elements of a vector for the which b component 
is to be annihilated by a plane rotation. 

% output 
c, s - The required transformation. 

r - The length of the vector. 

c = 1; s = 0; r = 1.0e-8; 

c = a/r; 
s = b/r; 

end 
function x = solve(R, b) 
% Solves Rx = b for x assuming R is upper right triangular. 
76 Input 
% 
% 

% x - solution. 
[m,n] = size(R); 
for k = n :- 1:1, 

b - Column vector of output data. 
R - right triangular matrix. 

% output 

sum = 0.0; 

for j = k + 1:n 

end 
x(k, 1) = (b(k) - sum)/R(k, k); 

sum = sum + R(k,j)*x(j, 1); 

REFERENCES 
A. Andrews, “A square root formulation of the Kalman covariance 
equations,” AIAA J.,  vol. 6, no. 6, 1968. 
G. J. Bierman, Factorization Methods for Discrete Sequential Estima- 
tion. New York: Academic, 1977. 
P. E. Gill, W. Murray, and M. H. Wright, Numerical LinearAlgebra 
and Optimization, vol. 1. Redwood City, C A  Addison-Wesley, 
1991. 
G. H. Golub and C. F. Van Loan, Matrix Computations. Balti- 
more, MD: The Johns Hopkins University Press, 1990. 
G. C. Goodwin and K. S. Sin, Adaptiiz Filtering Prediction and 
Control. 
P. S. Lewis, “QR-based algorithms for multichannel adaptive least 
squares Lattice filters,” IEEE Trans. Acoust., Speech, Signal Proc., 
vol. 38, no. 3, pp. 421-431, 1990. 
L. Ljung and T. Soderstrom, Theory and Practice of Recursiw 
Identification. Cambridge, MA: M.I.T. Press, 1983. 

Englewood Cliffs, NJ: Prentice-Hall, 1984. 

On Constrained Optimization of the Klimov Network 
and Related Markov Decision Processes 

Armand M. Makowski and Adam Shwartz 

Abstract-We solve a constrained version of the server allocation 
problem for the Klimov network and establish that the optimal con- 
strained schedule is obtained by randomizing between two fixed priority 
schemes. This generalizes the work of Nain and Ross in the context of 
the competing queue problem and also covers the discounted cost case. 

In order to establish these results, we develop a general framework for 
optimization under a single constraint in the presence of index-like 
policies. This methodology is in principle of wider applicability. 

I. INTRODUCTION 

Consider the discrete-time system of K competing queues 
with a single Bernoulli server as described in [5] and [XI. For 
one-step costs which are linear in the queue sizes, it is well 
known [4], [5], [ X I  that there exists an optimal policy which is of 
the strict priority type, and this, under several cost criteria 
including the discounted and average cost criteria in which case 
the search for optimal policies reduces to the computation of a 
few parameters. Let J ( ( 7 r )  and J J n - 1  be two cost functions 
associated with the one-step cost functions c and d ,  when the 
system is operated under the policy 7r. A single constraint 
optimization problem can then be defined as follows: 

(Po): Minimize J c ( 7 r )  subject to the constraint J d ( 7 r )  5 I/ 
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for some scalar I/. When both costs c and d are linear in the 
queue sizes, under the average cost criterion, Nain and Ross [19] 
obtained the following optimality result: There exist two fixed 
priority policies, say g and E ,  and a constant T* in [0,1] so that 
at every step, it is optimal to flip a coin with probability T* for 
heads, and to use g (respectively E) if a head (respectively tail) is 
observed. The optrmal randomization bias q* is selected so as to 
saturate the constraint. 

In view of such results, it is quite natural to inquire whether 
this structural result for the optimal constrained policy can be 
extended, say, to cover the following: 

i) The situation where the discounted or the finite-time cost 
criteria are used; 

ii) The scheduling problem associated with a natural exten- 
sion of the competing queue problem, the so-called Klimov 
system [14], where upon service completion, the customer may 
either be routed to one of the other queues or leave the system. 

More generally, it is certainly of interest to identify conditions 
under which the solution to a constrained Markov decision 
process (MDP) does exhibit such a randomized structure. In- 
deed, once this structural result is established, the search for 
optimal policies reduces to the identification of the two policies 
and to the computation of the randomization bias. 

We answer i)-ii) in the affirmative in Section IV. In the 
process, in Section I1 we develop a more general methodology 
which applies to systems with "index-like" optimal policies. This 
is embedded in the only "structural" assumption (Al), which 
states that for each 8 in [0,1], an optimal policy for the uncon- 
strained problem with cost c + 8d can be found within a given 
finite set of policies which set is independent of 8 in [0,1]. In 
Section 111, we show that the technical conditions apply to many 
MDP's, with finite, discounted, and average cost criteria. In 
Section IV, we establish the equivalence between the discounted 
Klimov system and open (or arm-acquiring) bandit problems. 
This establishes the structural result for the Klimov system 
under the discounted cost criterion, and for all bandits problems 
under mild conditions. Under slightly stronger assumptions, the 
structural result also holds for the Klimov system under the 
average cost criterion. 

MDPs under constraints where first solved by Derman and 
Klein [9] for the finite-horizon cost. When J ( T )  is the average 
cost criterion and both state space S and action space U are 
finite, the existence of optimal stationary policies under multiple 
constraints was established by Derman and Veinott [lo]. Hordijk 
and Kallenberg [13] solved the multiclass case. Under a single 
class assumption and for a single constraint, the existence of 
optimal stationary policies which are randomized at a single 
state was proved by Beutler and Ross [6] for finite S and 
compact U, and by Sennott [22] for countable S and compact U. 
Borkar [7] obtained analogous results under multiple constraints 
when S is countable and U is compact, and indicated similar 
results for other cost criteria. The multiple constraint case for 
countable S and countable U is treated by Altman and Shwartz 
[2]. Frid [ l l ]  solved the discounted problem with a single con- 
straint, using the Lagrangian approach. In [3], Altman and 
Shwartz prove existence of optimal policies for finite S and U 
under the discounted and other cost criteria, under multiple 
constraints, and present computational algorithms. 

Unfortunately, except for the finite case and the specific 
example in [l], there are no efficient methods for computing 
constrained optimal policies. The results mentioned in the previ- 
ous paragraph establish the existence of an optimal stationary 
policy which randomizes between some stationary deterministic 

policies. However, except for the finite case, the search for the 
two policies to be randomized is over all stationary deterministic 
policies. Our methodology provides conditions under which this 
search can be restricted to a finite set of policies. 

A few words on the notation and conventions used in this 
note: We consider an MDP (S, U, P )  as defined in the literature 
[20], [21], [25]. Both the state space S and the action space U are 
Polish spaces, and measurability is taken with respect to their 
Borel a-fields 9 ( S )  and B ( U ) ,  respectively. The one-step tran- 
sition mechanism P is described through a family of transition 
kernels ( Q ( x ,  U; dy)). The S-valued state process {X , ,  t = 

0, 1, } and the U-valued control process (Q, t = 0,1, ... } are 
defined on some measurable space (fl,S). The information 
(X,,,U,, XI;-*, U,- X , )  available at time t is compactly denoted 
by H,. We denote the space of probability measures on 9(U) by 
M(U),  and we write 9 for the collection of all (nonanticipative) 
admissible policies. For every control policy T in 9, let P" 
( E " )  denote the probability (expectation operator) induced by 

A policy T is a Markov policy if there exist Borel mappings 
(g,, t = 0,1, ... 1, g,: S + M ( U )  such that rr,(-; H I )  = g,(.; X,)P" 
- as .  for all t .  If (g,, t = 0, 1, ... } are all identical to g: S + 

M(U), the Markov policy is termed stationary and is identified 
with g. 

Unless stated otherwise, limn, limn and G,, are taken with n 
going to infinity. The infimum overan empty set is taken to be m 
by convention. 

77. 

11. A GENERAL CONSTRAINED MDP 

We interpret any Borel mapping c:  S X U --j R as a one-step 
cost function. To avoid unnecessary technicalities we always 
assume c to be bounded below, and without loss of generality we 
take c 2 0. For any policy rr in 9, we define J,(T) as the total 
cost (associated with c )  for operating the system under policy 77, 
with possible choices including the long-run average cost 

J c ( T )  lim,E" - c ( X s , 0 , ) ]  (2.1) [ '  t + 1 s = o  

and the infinite horizon p-discounted cost 

J J T )  .E"[ B'c(xs,us)], 0 < p < 1. (2.2) 
s = o  

The definitions (2.1) and (2.2) are all well posed under the 
nonnegativity assumption on c. 

Now, we consider two Borel mappings c,  d :  S x U + R, and 
for some scalar V ,  we set 

9av := {T €9: J d ( T )  I V } .  (2.3) 
The corresponding constrained optimization problem ( P o )  is 
formulated as 

( P o ) :  Minimize J c ( . )  over gV. 

Implicit in this formulation is the fact that the cost criteria J, ( - )  
and Jd(- )  are of the same type. 

For every 8 in [0,1], we define the mapping c,: S x U + R, 
bY 

c , ( x , u )  B c ( x , u )  + (1 - 8 ) d ( x , u ) ,  x E S,U E U. 
(2.4) 

To simplify the notation, we denote by J,(.rr) the total cost 
associated with c,, so that J,(rr) = JC(rr) for 13 = 1 and J,(T) = 
Jd(.rr) for 8 = 0. Assume the following: 
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(Al) There exists a finite number of Markov stationary poli- 
cies gl;.., g, such that 

(A1 .a) 
0 E [O, 11. 

(2.5) 

(A1.b) For each 1 = 1;.., L,  the mapping O - J,(g,)  is 
continuous on 10, 11. 

Under (All, the mapping 0 - ]*(e) is continuous on [O, 11. 
As in [1], the Lugrungiunproblem is defined as the problem of 
minimizing J,(.) over the unconstrained set of policies 9. We 
define 

N ( O )  2 ( I  E {1;-,L}: J,(g,)  = J * ( O ) ) ,  O E  [0,1]. 

(2.6) 

By (Al.a), for each 0 in [0,1], the index set N ( 0 )  is nonempty 
and (A1.b) implies 

limJi(gl) = limJi(g,) = J * ( O ) ,  1 E N ( O ) .  (2.7) 
s r e  H L O  

Furthermore, if N ( O )  is a singleton, then N ( 0 )  = N(6)  in some 
open neighborhood of 0. We set 

0 E [0,1]. (2.8) 

If Ju(gncoJ = Jd(gnco,) > V ,  then the problem (P,) is not feasible 
and, therefore, possesses no solution. Assuming feasibility from 
now on, we set 

0* 4 sup(0 E [O, 11: J,(&(,))  I V } .  ( 2 . 9  

If O* = 0, then necessarily J d ( g H ( " J  I V ,  but we may have to 
entertain the possibility that 

min(J,(g,): 1 5 1 I L,J,(g,)  5 V )  

> inf { J C ( r ) :  J d ( r )  I V }  
T T t P I C .  

since the Lagrangian problem may not provide enough informa- 
tion. 

If O* = 1, them ( P t , )  has a solution: Indeed let 0, f 1 in (0, 11 
so that J,(g,,(,,)) I V for all i = 1,2;.., by the definition of O * .  
A converging subsequence, say 0, f 1, can always be selected so 
that n(O,> + n* for some n* in {I;.., L}. In fact, we can assert 
n ( O , )  = n* whenever j 2 j *  for some j * .  It is plain that n* is an 
element of N(O,) for j 2 j*, whence J o ( g , l * )  = J * ( O , ) .  The con- 
tinuity of 0 -+ J * ( O )  implies that n* is'an element of N(1), and 
since Jd(gn*) I V ,  we conclude that the policy g,* solves (P, 1. 

From now on, assume 0 < 0* < 1. Let 0,J  O* in (0 , l )  and 
denote by i z  an accumulation point of the sequence {n (0 , ) ,  
i = 1,2, ... }. Similarly, let 0, O* in (0 , l )  such that JJgn(",])  I 
V and denote by n an accumulation point of {"(e,), 1 = 1,2 ,  ... 1. 
Again, n( 0,) = E and n( 0,) = for all i and j large enough. By 
(Al.b), both E and n_ are elements of N O * ) ,  so that 

J o * ( g , l )  = J,*(g,) = J*(O*) 

Jd(gn)  5 V 5 J d ( g n ) .  

(2.10) 

(2.11) 

must hold. Moreover, it is plain that 

The first inequality follows by construction and (Alh) ,  whereas 
the second inequality results from the construction and from 
(2.8) and (2.9). 

Next, we define g, E, and {g",  0 I 77 5 l}, as the Markov 
stationary policies g s e n  by 

g a s z 3  g p g i i  (2.12) 

g'J 4 qg + (1 - 77)E, 77 E [0,11. (2.13) 

Then g'J is the simple randomization between the two policies g 
and jj with randomization bias 7. The identities (2.10) and (2.117 
now take the form 

J e * ( g )  = J o * ( ' q )  =/*(e*)  (2.14) 

J&) I v I J f f ( S ) .  (2.15) 

At this point we introduce assumption (A2): 
(A2) The mapping q + J,(g") is continuous on [O, 11. 
Lemma 1: Under (A l )  and (A2) there exists a solution 77* to 

J,(g")  = V ,  77 E [O, 11. (2.16) 

Prooj This is immediate from the fact that the mapping 
7 - JJg'J) is continuous on [O, 11 and from the inequality (2.15) 

We further assume that conditions (A3)-(A5) are enforced, 

iA3) J , * ( R " )  = J , * ( g ) ,  77 E [O, 11. (2.17) 

the equation 

which can written as J d ( g l )  I V I J d ( g O ) .  

where 

(A4) J,*(gq*) = 0 * J , ( g q * )  + (1  - O * ) J , ( q " * ) .  (2.18) 

(A51 For every admissible policy r in 9, 

J , ,* (T)  I ~ * J , ( T )  + (1 - ~ * ) J , ( T ) .  (2.19) 

Theorem 2: Under (Al)-(AS), the policy gq* [where 77* is a 
solution of (2.1611 solves the constrained problem (P,) provided 
O* > 0. 

Proof: We first note that 

J*( O * )  = J ,* (g ' J* )  (2.20) 

= 0 * J , ( g " * )  + ( 1  - O * ) J d ( g ' J * )  (2.21) 

where (2.20) follows from (2.14) and (MI, whereas (2.21) is 
validated by (A4). Now 

J , * ( T )  2 J * ( O * ) ,  T €9 (2.22) 

by virtue of (Al.a), and 

J,,*(T) I O * J , ( r )  + (1 - ~ * > J , ( T ) ,  T E P  (2.23) 

by invoking (A5). By Lemma 1, the policy gq* is an element of 
3, since Jd(g 'J*)  = V by construction, and upon combining 
(2.20)-(2.23), we get 

O * J , ( T )  + ( 1  - O * ) J d ( T )  

2 J , * ( T )  

2 o * J , ( g T * )  + (1 - 8*)V,  T E P (2.24) 

It is now plain from (2.24) that 

O*J&'J*) I 0 * J , ( T ) ,  T €9" (2.25) 

and the result follows since O* > 0. 
Theorem 2 and its proof remain unchanged if (A21 is replaced 

by the conclusion of Lemma 1, namely that there exists a 
solution to (2.161, and if, in addition, (2.17) is assumed to hold 
only for 7 = q*. However, (A2) and (A3) seem more natural 
and hold under weak conditions, as shown in Section 111. More- 
over, q* is usually not known and therefore (A2)-(A4) are 
verified by establishing the conditions for all q in [0,1]. 
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We conclude this section by noting that the Markovian prop- 
erties and the specific structure of the cost criterion are not used 
in the proof of Theorem 2, in that the discussion applies to any 
optimization problem which satisfies conditions (Al)-(M). The 
only point which requires special care is the construction of an 
“interpolated” policy (2.13). 

In particular, consider the finite horizon P-discounted cost 

J , ( a ) n E “ [  t p ’ c ( X , , q ) ] ,  O < P i  1 , T =  1,2;.. . 
s = o  

(2.26) 

The derivation of Lemma 1 and Theorem 2 holds verbatim, 
provided (Al) holds with the word “stationary” omitted. Since 
the identification of a policy g with a single function S + M ( U )  
does not hod any longer, (2.13) is interpreted naturally as 

g: ngt + (1 - 7)gt, 7 E [ 0 , 1 ] ,  t = 0, l;.. . (2.27) 

111. THE A S S U M ~ ~ I O N S  

In this section, we discuss the assumptions (Al)-(A5); we give 
concrete and verifiable conditions for several cost criteria. The 
discussion and methods apply, mutatis mutandis, to other situa- 
tions as well. A specific model is analyzed in Section IV. 

The Finite-Time Cost Criterion: Condition (A2) holds if the 
costs are bounded since then the costs are polynomial in 7. 
More generally, the same argument establishes (A2) if the costs 
are merely bounded from below (or from above). 

Assumption (A3) holds if (2.5) is valid for all initial conditions, 
since then a backward-induction argument proves that for any 7 
in [O, 11, g” is optimal for the Lagrangian problems. Finally, (A4) 
and (A5) are always valid since under the nonnegativity assump- 
tion on c and d ,  

J ~ ( T )  = eJc(T) + (1 - B ) J ~ ( ~ ) ,  e E [0,1] (3.1) 

for every admissible policy T in 9. Condition (A1.b) immedi- 
ately follows. 

The Discounted Cost Criterion: Condition (A21 holds if the 
costs are bounded since then the total discounted cost can be 
approximated by a finite number of terms in (2.2) uniformly in 7, 
and the finite case argument applies. More generally, under the 
same conditions as for the finite cost, the same argument applies 
provided a finite approximation is valid. This is the case if the 
tail of the infinite sum is bounded for 7 in [0,1]. This condition 
holds for all but the most pathological systems. 

Assumption (A3) holds under rather weak conditions. For 
example, suppose the action space is compact and the costs 
bounded above. Assume further that for each x in S, the 
mappings U + c(x, U )  and U + d ( x ,  U )  are lower semicontinu- 
ous and that the transition kernel function U + Q(x; . ; dy)  is 
weakly continuous (i.e., whenever c: S + R is bounded and 
continuous, the mapping U + / c ( y )  dQ(x ,  U ,  d y )  is continuous 
on U ) .  Then any policy with actions in the optimal set (de- 
termined through the dynamic programming equation) is opti- 
mal for the Lagrangian problem [21]. This implies that (2.17) 
holds whenever (2.5) is valid for each initial condition. Note that 
in this case boundedness from above replaces boundedness from 
below. 

Finally, (A4) and (A51 always hold since, as in the finite case, 
(3.1) holds, and condition (A1.b) immediately follows. 

The Long-Run Auerage Cost Criterion: Condition (A2) was 
established when the state space S is finite in [16], and for the 
queueing system discussed in the next section in [18]. A general 
method for verifying (A2) is available in [23]. In particular, this 

condition holds whenever the Markov chain is ergodic under 
both g and E, provided the costs are integrable under the 
resultisg invariant measures [16]. 

Condition (A3) can be established using dynamic program- 
ming arguments, as in the case of the discounted cost, although 
the requisite conditions are more stringent [21], [25]. For some 
systems (such as the one described in Section IV), (A31 can be 
established by direct arguments 151, [181. 

Finally, we observe that for every admissible policy T in 9, 

1 ‘  
Je(.rr) = -( lim, BE“ [ t + L 0  ~ c ( X , U s ) ]  

= B J , ( r >  + (1 - 0 ) J d ( r ) ,  13 E [0,1] (3.2) 

so that condition (A51 is always satisfied. The validity of (A4) is 
more delicate to establish. In [23], the authors give conditions 
under which the long-run average cost criterion (2.1) is obtained 
as a limit under stationary policies. Under these conditions, (A4) 
holds, and (A1.b) follows. 

IV. BANDITS AND QUEUES 

The purpose of this section is to show the equivalence be- 
tween the discrete-time Klimov problem [14], [17] and arm- 
acquiring bandit processes [24]. Continuous-time versions of this 
result are discussed in [15], [25]. Since both systems were dis- 
cussed in detail elsewhere, we shall give only short informal 
descriptions. Throughout this section, the rv 6 and the i.i.d. 
sequence { A ( t ) ,  t = 0,1, ... } taking their values in N K  are held 
fixed. We introduce the finiteness assumption 

E [  tk ]  < and E [ A k ( t ) ]  A, < a, k = 1,2;.., K .  

(F) 

Am-Acquiring Bandits: The formulation is given in the termi- 
nology of queueing systems in order to facilitate the comparison: 
Customers of type 1,2;.., N arrive into the system; a customer 
of type n can be in one of the states {1,2;.., Sfl}. It is convenient 
to lump together customers sharing both type and state [24]; we 
shall say that a customer of type n in state s = l;.., S,, resides 
in queue k ,  where 

n- 1 

k =  c S j + s  
I =  1 

and where K = C:=lSfl. With this convention, the number of 
customers initially in the system is 6, and new customers arrive 
to the queues according to the arrival process ( A ( t ) ,  t = 0,1, ... }. 
At most one customer can be given service attention at a time. If 
a customer from queue k is served in time slot t ,  then at the end 
of the slot, with probability pk,  this customer moves to queue 
1, k ,  1 = l;.., K. All other customers do not change state-in 
other words, they remain at their queues. The routing rvs are 
assumed to form an i.i.d. sequence. It is clear that the vector x 
in N K ,  where x k  is the number of customers in queue k ,  serves 
as a state for this MDP provided arrival, service completion and 
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routing processes are mutually independent. This together with 
the assumption on the routing mechanism implies that at each 
queue, the events that a customer leaves the system can be 
modeled by i.d.d. Bernoulli rvs with queue-dependent parame- 
ter. The action U = k is interpreted as service at queue k ,  U = 0 
as idle server, with the provision that x ,  = 0 implies U # k ,  
k = 1,2;.., K.  If a customer in queue k is served, then reward 
r ( k )  is incurred. The reward to be maximized is of the dis- 
counted type (2.2), and takes the form 

J , ( r ; x )  Li E" p ' r ( q )  , 0 < P < 1 (4.2) Lo 1 
which is well defined since r is bounded. 

The classical description of the arm-acquiring bandits requires 
Z i p k l  = 1 for each k = l;.., K. However, this restriction is a 
purely semantic one since the effect of departures from the 
system can always be captured through the introduction of an 
absorbing queue with small (negative) reward for service, so that 
it is never served. 

The Discrete-Time Klimov Problem: Customers of type 
1,2;.., K arrive to their respective queues according to the 
arrival process {A( t ) ,  t = 0,1, ... 1. The number of customers 
present at time 0 is given by 5. The server can attend at most 
one queue at a time. If the server attends a nonempty queue, say 
queue k ,  k = l;.., K ,  during time slot t ,  then at the end of the 
slot the following sequence of events takes place: 

One customer leaves that queue with probability p, and, with 
probability 1 - p, no customer leaves that queue; If a cus- 
tomer has left queue k ,  then with probability j k l  it joins 
queue 1, 1 = l;.., K ,  and it leaves the system with probability 

For k ,  1 = l;.., K ,  we set p k i  pkPkl for 1 # k and p,, a 1 - 
pk(l - P k k ) .  Using this transformation, the values of p, are 
henceforth taken to be 1. Then clearly, assuming arrival, service 
completion and routing processes to be mutually independent, 
the dynamics of this system are equivalent to the dyanmics of 
the corresponding arm-acquiring bandit system. 

The state of this system is again the vector x in N K  where x ,  
denotes the number of customers in queue k ,  k = l;.., K. The 
cost for the Klimov problem is defined by 

1 - CLIP,/. 

K 

C ( X ,  U )  = C ( X )  c,x, ,  x E N K ,  U = 0 ,  l;.., K 
k =  1 

for some constants cl;.., cK (which are usually assumed nonneg- 
ative). The objective is to minimize the discounted cost associ- 
ated with this one-step cost, viz. 

J , ( r )  2 E" P ' c ( X , )  , ~€9'. (4.3) [ , Y o  1 
Following the cost-transformation technique of [4] [5], it is 
straightforward to derive the identity 

P P +- 5 I 
J , ( r )  = - 2c(A) - -J?(T),  ~ € 9 .  

1 - P  ( 1 - P )  1 - P  

(4.4) 

where the one-step cost E is defined by 

k = l; . . ,  K (4.5) 

with action U defined as in the bandit problem. As a result, for 
each fiwed p in (0,1), we have 

argmin J , ( r )  = argmax J E ( r ) .  (4.6) 

The cost function E depends only on the queue being served, 
and so is a legitimate cost function for the bandit problem. 

The Equivalence Result: We have the following theorem: 
Theorem 3: Any discrete-time Klimov problem defines an 

arm-acquiring bandit system with the same dynamics. Under 
( F ) ,  they possess the same optimal policies, with costs related by 
(4.4) and (4.5) (with r ( k )  E,, k = l;.., K ) .  Conversely, any 
arm-acquiring bandit system defines a Klimov problem with the 
same dynamics. Moreover, Under ( F ) ,  if the vector r 
(r(l) ,  r(2); . . ,  r(K))' is in the range of I - P ,  then the cost in the 
Klimov problem can be defined so as to satisfy the transforma- 
tion (4.4) and (4.5) (with E, a r ( k ) ,  k = l;.., K )  and conse- 
quently, the same policies are optimal for both systems. 

The proof follows from the preceding discussion, upon observ- 
ing that if r is in the range of I - P then there is a one-to-one 
mapping between (cl;.., c , )  and (E1; . . ,  E K ) .  

Constrained Optimization: The best-known class of problems 
for which the hypotheses (Al)-(A5) hold is the class of arm- 
acquiring (or open) bandit processes [24] described above. For 
consistency with the notation of Section 11, we let c and d 
denote the two cost functions (which are here independent of 
X 1. 

Lemma 4: For the arm-acquiring bandit problem under the 
discounted cost criterion, conditions (Al)-(A5) hold. 

Proof It is well known [24] that the optimal policy for this 
system possesses an index-structure. Thus an optimal policy (for 
any 0 5 0 I 1) chooses only which queue to serve. Therefore, 
such a policy is uniquely determined by an ordering of the 
queues, where a queue is served only if queues with higher 
priority are empty. Since there is a finite number K !  of such 
policies, (A1.a) follows. Since the costs are bounded and the 
action space is discrete, the argument in Section 111 now estab- 
lishes the result. w 

A'(Z - P)e  < 
1 (where e is the element of N K  given by e = (l;.., 1)'). A policy 
is called nonidling if x ,  = 0 implies U # k .  

Lemma 5: Consider the average-cost case. Assume ( F )  and 
that the Klimov problem is stable. Moreover, let c, 2 0, k = 

l;.., K.  i) If {gl ,  1 = 1,2;.., L}  is a collection of stationary 
nonidling policies, then (A1.b) and (A2)-(A5) hold; ii) If P is 
diagonal than (A1.a) holds, where {gl ,  1 = 1,2;.., L)  is a collec- 
tion of strict priority policies. 

Proof Under the conditions in i), Makowski and Shwartz 
[17], [23] establish (A2), whereas (A41 follows from [23]. As 
discussed in Section 111, (A5) holds, and (A1.b) follows from 
(A4). Finally, under the regularity conditions established in [ 171, 
standard dynamic programming techniques yield (A3). Part ii) is 

When P is diagonal, Theorem 2 now implies the existence of 
an optimal policy which randomizes between two strict priority 
policies, and we recover the results of [19]. In general, if we 
strengthen ( F )  to require finite second moments, then [17], [181 
establish that for every stationary nonidling policy T ,  the aver- 
age cost J,(r) of (2.1) is obtained as a limit. From general 
results on MDP's there exists an optimal stationary policy for 
the average Lagrangian problem. Since the costs are positive, 
sample path arguments imply that this policy can be assumed 
nonidling. A standard Tauberian theorem [ 121 now implies that 
for each stationary nonidling policy, the average cost is the limit 

We say that the Klimov problem is stable if p 

established in [4], [5] w 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 2, FEBRUARY 1993 359 

of the normalized discounted cost. Since (A1.a) holds in the 
discounted case (Lemma 4) where g,;..,g, are strict priority 
policies, (A1.a) holds also for the average problem under the 
above conditions. Theorem 2 now implies the existence of an 
average cost optimal policy which randomizes between two strict 
priority policies. 

Thus the result of Nain and Ross [19] extends to the Klimov 
problem, and this under both the discounted and the average 
cost criteria. 
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Polynomial LQG Regulator Design for General 
System Configurations 

A. Casavola and E. Mosca 

Abstract-This note deals with a polynomial-equation approach to the 
linear quadratic Gaussian (LQG) regulation problem for a general 
system configuration. The solution is given in terms of a left-spectral 
factorization plus a pair of bilateral Diophantine equations. The result- 
ing control-design procedure is based on an innovations representation 
of the system. This can be obtained from a physical description by 
solving, via polynomial equations, a minimum mean-square error 
(MMSE) filtering problem. The use in cascade of the above two proce- 
dures allows one to generalize previous polynomial design results to 
general system configurations. 

I. INTRODUCTION 

This note deals with the polynomial-equation approach to the 
linear quadratic Gaussian regulation (LQGR) problem. The 
latter is sometimes referred to as the “standard” H2 optimal- 
control problem [ 11. The system configuration considered here is 
general and comprises all possible control-system configurations 
as special cases. 

Recently, a transfer-matrix Wiener-Hopf approach to the 
general LQGR problem was considered in [2] and [3] for the 
discrete- and continuous-time cases respectively. These solu- 
tions, however, suffer from the fact that the controller, not being 
obtained in irreducible form, is susceptible to exhibit unstable 
hidden modes, whenever the system is open-loop unstable. In 
this case, in fact, owing to numerical inaccuracy, stability of the 
closed-loop system may be lost [2]. 

The main goal of this note is to explore if the above difficul- 
ties can be overcome by using the polynomial-equation approach 
first introduced by [4]. A possible way to address the problem is 
to use an innovations representation of the system, obtainable 
from the physical description by solving a minimum mean-square 
error filtering (MMSE) problem. This, in turn, can be solved via 
polynomial equations as well [5] and [6]. Consequently, the 
whole polynomial LQGR design for general system configura- 
tions explicitly involves a two-stage procedure reminiscent of the 
certainty-equivalence property of stochastic dynamic program- 
ming for the LQGR. This approach addresses a more general 
setting and yields a simpler design method than the direct route 
used in [7] and [8]. 

The outline of the note is as follows. In Section 11, the 
polynomial approach to the general LQGR problem is formu- 
lated, and conditions are given for its solvability. The polynomial 
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